Quantitative Dual Energy Computed Tomography in Pulmonary Hypertension

Study Purpose

Pathophysiological mechanisms leading to pulmonary hypertension (PH) are complex. Quantitative computed tomography (QCT) can help us to study morphological alterations in patients with PH. These CT morphometrics are useful to predict the degree of PH severity at least in PH secondary to chronic obstructive pulmonary disease (COPD). We hypothesized that assessing lung perfusion using dual energy CT (DECT) can refine our knowledge on PH pathophysiology and help to predict PH severity irrespective of its etiology

Recruitment Criteria

Accepts Healthy Volunteers

Healthy volunteers are participants who do not have a disease or condition, or related conditions or symptoms

No
Study Type

An interventional clinical study is where participants are assigned to receive one or more interventions (or no intervention) so that researchers can evaluate the effects of the interventions on biomedical or health-related outcomes.


An observational clinical study is where participants identified as belonging to study groups are assessed for biomedical or health outcomes.


Searching Both is inclusive of interventional and observational studies.

Interventional
Eligible Ages 18 Years - 65 Years
Gender All
More Inclusion & Exclusion Criteria

Inclusion Criteria:

  • - adults (18 years old and over) - Patient with PH diagnosed at right heart catheterization.
  • - Availability of a dual energy chest CT scans with contrast injection performed as part of standard patient workup.
  • - Patient's consent or authorisation for data processing.

Exclusion Criteria:

- patient without any chest CT scan available or planned in the patient workup

Trial Details

Trial ID:

This trial id was obtained from ClinicalTrials.gov, a service of the U.S. National Institutes of Health, providing information on publicly and privately supported clinical studies of human participants with locations in all 50 States and in 196 countries.

NCT03901287
Phase

Phase 1: Studies that emphasize safety and how the drug is metabolized and excreted in humans.

Phase 2: Studies that gather preliminary data on effectiveness (whether the drug works in people who have a certain disease or condition) and additional safety data.

Phase 3: Studies that gather more information about safety and effectiveness by studying different populations and different dosages and by using the drug in combination with other drugs.

Phase 4: Studies occurring after FDA has approved a drug for marketing, efficacy, or optimal use.

N/A
Lead Sponsor

The sponsor is the organization or person who oversees the clinical study and is responsible for analyzing the study data.

University Hospital, Bordeaux
Principal Investigator

The person who is responsible for the scientific and technical direction of the entire clinical study.

N/A
Principal Investigator Affiliation N/A
Agency Class

Category of organization(s) involved as sponsor (and collaborator) supporting the trial.

Other
Overall Status Recruiting
Countries France
Conditions

The disease, disorder, syndrome, illness, or injury that is being studied.

Pulmonary Hypertension
Additional Details

Pulmonary hypertension (PH) is a serious disease with poor prognosis and high morbidity and mortality. It is defined as an increase in mean pulmonary arterial pressure (mPAP) above or equal to 25 mmHg measured by right heart catheterization, which is an invasive technique. Computed tomography (CT) plays an important role in the classification of PH and the identification of pulmonary etiologies responsible for PH (chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis...) or signs of chronic thromboembolic PH (CTEPH). Quantitative CT allows accurate analysis of the morphological changes found in PH and leading to a better understanding of the complex interactions involved (arterial and bronchial remodeling in PH secondary to COPD, inflammation etc.). Dual energy CT acquisition has shown its interest in helping to diagnose pulmonary embolism. It provides information on pulmonary perfusion by performing iodine mapping and measuring pulmonary perfusion blood volume (PVB). This project intends to study morphological and functional alterations at bronchial and vascular levels in PH patients using quantitative DECT and to examine their impact to predict existence and severity of PH irrespective of its etiology. To measure from DECT scan images, cross sectional area of small pulmonary vessels (CSA), bronchial wall thickness (WT) and pulmonary perfusion blood volume. To collect data from right heart catheterization, echocardiography, pulmonary functional tests and blood tests. All these examinations will be performed in routine care within a week after the patient is referred to our institution. Statistical analysis of these parameters could lead to a multivariate model able to predict existence and severity of PH. In addition, DECT allows the use of low energy (low Kilovoltage), which increases contrast and improves segmentation of the pulmonary arteries. Thus, peripheral pulmonary arteries and veins can be distinguishable in order to evaluate not just the sectional area of the small pulmonary vessels but also 3D volume of small pulmonary arteries (VSA). This technical modification would make it possible to refine the quantitative exploration of the vascular compartment of PH

Arms & Interventions

Arms

Experimental: dual energy CT

The procedure involves post processing and analysis of reconstructed images from dual energy CT scans available at the Bordeaux University Hospital and used in routine care, which will allow us to collect morphometric data (bronchial wall thickness and cross sectional area of small pulmonary vessels) and to assess pulmonary perfusion by studying iodine mapping and quantifying pulmonary perfusion blood volume (PVB)

Interventions

Other: - dual energy CT scans

The procedure involves post processing and analysis of reconstructed images from dual energy CT scans available at the Bordeaux University Hospital and used in routine care, which will allow us to collect morphometric data (bronchial wall thickness and cross sectional area of small pulmonary vessels) and to assess pulmonary perfusion by studying iodine mapping and quantifying pulmonary perfusion blood volume (PVB)

Contact a Trial Team

If you are interested in learning more about this trial, find the trial site nearest to your location and contact the site coordinator via email or phone. We also strongly recommend that you consult with your healthcare provider about the trials that may interest you and refer to our terms of service below.

International Sites

CHU Bordeaux, Bordeaux, France

Status

Recruiting

Address

CHU Bordeaux

Bordeaux, ,

Site Contact

Francois Laurent, MD, PhD

francois.laurent@chu-bordeaux.fr

335 57 65 65 42

For more information, please contact PHA at Research@PHAssociation.org and refer to the terms of service below.

Submit Feedback

The content provided on clinical trials is for informational purposes only and is not a substitute for medical consultation with your healthcare provider. We do not recommend or endorse any specific study and you are advised to discuss the information shown with your healthcare provider. While we believe the information presented on this website to be accurate at the time of writing, we do not guarantee that its contents are correct, complete, or applicable to any particular individual situation. We strongly encourage individuals to seek out appropriate medical advice and treatment from their physicians. We cannot guarantee the availability of any clinical trial listed and will not be responsible if you are considered ineligible to participate in a given clinical trial. We are also not liable for any injury arising as a result of participation in a clinical trial or study.